o

GAE Public Hearing Extended Testimony 334 Hollister Way West
February 29, 2008 Glastonbury, CT 06033
Testimony of Denise M. Weeks Denise@CTVotersCount.org
Good moming, Chairs and members of the committee. My Name 1s Denise Weeks and I am a resident of Glastonbury CT.
I appreciate this opportunity to comment.
I have 30 years experience working with computers, as a programmer, systems designer and project and operations
manager.
1 believe the greatest threat to the integrity of our voting systems comes from their susceptibility to fraud and I am
here to ask that you continue to mandate hand counts for audits AND recounts.
In my recent testimony to the committee in West Hartford, T outlined several ways in which the AcuVote Optical Scanner
is vulnerable to fraud in ways that would evade pre-clection testing. I was speaking theoretically at the time, based on my
own experience as a manager of large application testing projects.
However, we need go no further that our own Voting Technology Research Center at UCONN for examples that support
my conclusions.
In a recent report (1), Dr. Alexander Shvartsman and his team outlined several types of mal-ware or malicious code that
could be introduced to alter the result of clections AND described how such attacks could avoid detection in pre-clection
testing. These attacks include:
Initializing the counts in a race to +K and ~K to eftectively alter the outcome of the race while producing an
apparently valid Zero Tape at the start of the election, and balancing the number of ballots to the number of voters
checked off.
An attack in which a candidate’s votes could be nullified by moving their bubble sheet location to an area with no
bubbles, or swapping their vote with another candidate’s by swapping their bubble locations.
Altering the count on an under voted ballot to add a vote for a particular candidate that the voter did not select

With each of these attacks, the tallies on the final election tape would not reflect the voters™ intent, The report
cautions:

“the ability to tamper with the printer from the loaded sottware ..., shows that the tape alone should not be trusted
unless significant measures are taken to validate the code (p7).”

Their report goes on to demonstrate how an attacker could place a “time bomb” or date/event scnsitive code in the
software to allow the attack to evade detection in pre-election testing:

“This sensitivity to time will prevent poll-workers that perform the standard test procedures from revealing that a
machine is compromised prior to the election (P6).”

Indeed, the report further states that:

“it 1s possible to deliver [malicious code| into the [scanner| having limited physical access to the machine, using
only standard hardware, and it takes only minutes to do so. Furthermore, this could be carried out at any time
between the original initialization and election day (p8).”

Finally the report had this to say about audits:

“Post-clection random audits of the voting machines coupled with manual-counts would help identify faulty or
compromised machines.

Replacing the hand count with a machine count for audit OR a recount is a bad idea. Tt removes the most reliable
safeguard we have against programming crrors and fraud ot the type I described. T urge you

* To maintain hand counted audits and recounts

= To strengthen the audits so we
o Count enough of the ballots to deter and detect ervor oy fraud
o Mandate that discrepancics be investigated and where necessary expand the audit
o> Implement “hot audits™ where audits are started shortly after the election
o To climinate loop holes n the law such as the exemption for ballot questions and the exemption for towns

where recounts or challenges have occurred
That concludes my testimony. Thank you for the opportunity to comment.

Tampering with Special Purpose Trusted Computing Devices:
A Case Study in Optical Scan E-Voting

Aggelos Kiayias Laurent Michel

Andrew See

Alexander Russell
Alexander Shvartsman

Narasimha Shashidhar
Seda Davtyan

{aggelos,ldm,acr,karpoor,andysee,aas,seda }@engr.uconn.edu
Voting Technology Research Center
Department of Computer Science
University of Counecticut
Storrs, CT

Abstract

Special purpose trusted computing devices are currently
being deployed to offer many services for which the general
purpose computing paradigm is unsuitable. The nature of
the sevvices offered by many of these devices demand high

Securiny and reliabiliny, as well as low cost and low power
consumption. Electronic Voting machines is a canonical ex-
ample of this phenomenon. With electronic voting machines
currently being used in much of the United States and sev-
eral other countries, there is a strong need for thorough
security evaluation of these devices and the procedures in
place for their use. In this work, we first put forth a gen-
eral framework for special purpose trusied computing de-
vices. We then focus on Optical Scan (OS) electronic voting
technology as a specific instance of this framework. OS ter-
minals are a popular e-voting 1echnology with the decided
advantage of a user-verified paper trail: the ballot sheets
themselves. Siill election results are based on machine-
generated totals as well as machine-generated audii reporis
1o validate the voting process.

In this paper we present a security assessment of the
Diebold AccuVore Optical Scan voting terminal (AV-08),
a popular OS terminul curvently in wide deployment un-
ticiparing the 2008 Presidenitial elections. The assessment
is developed using exclusively reverse-engineering, with-
out any technical specificarions provided by the mmachine
suppliers. We demonstrate a number of security issues
that relate 1o the machine’s proprietary lunguage, called
AccuBasic, thal is used for reporting election resulls.
While this language is thought 10 be benign, especially
given thal i1 is essentidlly sandboxed by the firmware (o
Lave only read access, we demonsirate that i1 is powerful
enough 10 (i) strengthen known attacks againsi the AV-OS
so that they become undeteciuble prior lo elections (und

thus significantly increasing their magnitude) or, {ii) to con-
ditionally bias the election results to reach a desived out-
come. Given the discovered vulnerabilities and attacks we
proceed 1o discuss how random audits can be used to val-
idate with high confidence that a procedure carried out by
special purpose devices such_as the AV-OS has _nor been
manipuloted. We end with a set of recommendations for the
design and safe-use of OS voting systems.

1. Introduction

A special purpose computing device is a computing sys-
tem designed to be reliable for a certain specialized class
of applications. This is in stark contrast to the goals of
a general-purpose computer, designed to provide a broad
spectrum of services without addressing specialized secu-
rity concerns. The design of specialized devices, on the
other hand, should make it possible to offer several ser-
vices to the end-user in a more secure, reliable fashion,
something that may not be as readily feasible when using
a general-purpose computer. Notable examples of special
purpose trusted computing devices in current use are auto-
matic teller machines (ATMs or Bancomats) in banks. home
gaming stations, and electronic voling terminals.

Given that the security concerns for such specialized de-
vices vary from one application to the next, we first present
a general architecture of such a typical system. We briefly
discuss the different modules, both active and passive, that
collectively fonm the system. We analyze the different pa-
ramelers of cach module from a security standpoint and il-
lustrate (he several classes of threats or attacks that can be
launched against such a system.

Based on thts framework we proceed lo analyze a
widely-used clectronic voting technology. called Optical

Scan (OS) voting. Such voting terminals have been in active
usc in many clections in the United States. Subsequently,
we tocus on the proprictary language for writing software in
a particular OS voting terminal: we present malware wril-
ten in this language that affects the intended system oper-
ation. We then provide pointers and recommendations for
safe use of such systemns including random audits. The hope
is that rcaders may garner the lessons leamned from the de-
fects of the particular terminal (that is currently in use in
many states and will be employed in the upcoming 2008
presidential elections) and that the industry standards for
the security for such systems will be inproved.

Electronic Voting. E-democracy [4]. the use of elec-
tronic technologies (o support the democratic process, s
a topic of much debate within the government, industry,
and academia. Elections fonm the foundation of any suc-
cessful democracy and safeguarding their integrity is nat-
urally an issue of paramount importance to the clectorate.
Thus, a principal cause of concern is the accuracy, security,
and effectiveness of the electoral apparatus used to conduct
elections. After the disputed 2000 presidential election, the
role of technology in the voting process has attracted an in-
ternational audience. Electronic Voting Machines (EVMs)
have since then been brought to the focus of attention and
they were touted by many as the 1nuch needed replacement
of the previous voting technology using punch cards and
lever machines. The Help America Vote Act (HAVA) [5]
enabled the upgrade of voling equipment nation-wide with
a promised budget of $3.8 biflion for election reform. As
reported in [6], depending on the state, 30% to 90% of the
funds that were cventually allocated would be spent on vot-
ing equipment. The effects of the upgrade are already evi-
dent, since in 2006 it was estimated that about 130 million
volers would be using EVMs to cast their votes {7].

While EVMs appear to offer improved performance in
tenms of reducing residual vote rates, see, e. g., [8], and pro-
vide more flexible human interfaces, they also became the
subject of intense scrutiny from a computer security view-
point. Several studies [3, 9, 10, 11, 12, 1, 13, 14, 15] in-
vestigated the competence of some EVMs in usc as well
as perfornmed evaluation and security assessment and re-
turned alarming results. Evidently, there are significant de-
sign challenges (o be overcome before EVMSs can be con-
sidered (ruly salisfactory election instruments. To gain the
trust of the clectorate and to maintain the integrity of the
clectoral process the need for a thorough security evalua-
tion of these devices and the procedures in place for their
use cannot be understated.

It should be stressed that not all EVMs are “equal™;
excluding minor differences there are two major types of
clectronic voting equipment: Direct recording clectronic
(DRE) machines and optical-scan «OS) machines. There is
heated debate over which technology is more suitable. and

at present the adoption is split between the two types of svs-
tems [7]. with larger counties favoring DRE machines and
smaller countics favoring OS machines. From a security as-
sessiment point of view DRE’s have attracted most of the
criticism [10, 12, 13, 15], while OS technology is typically
touted as the safer altemative (though not without its own
problems [1, 14]). Iudeed, an important bencfit of the opti-
cal scan technology is that it naturally yields a voter-verified
paper audit trail (VVPAT)—the actual “bubble sheet™ bal-
lots marked by the voters. This differentiates OS elecironic
voting from DRE voting terminals (such as the Diebold Ac-
cuVote TS [10, 15] and TSx [13] terminals for exaumple) that
provide a digital interface for voting during the elections.

Contributions. We present the following contributions.

First, we present a general framework for describing
the general architecture of special purpose trusted comput-
ing devices that highlights their vulnerable components (cf.
Section 2); we show how OS voting tenminals in general,
and the AV-0S in particular, fit into this general framework.

Sccond, we focus on the vulnerabilities of one particu-
lar component in the architecture that deals with the critical
reporting functionality of the device. For the AV-0S, the
reporling Tunctionahity 1s based on the AccuBas ic propfi-
ctary interpreted language that we reverse engineered based
on a compiler that is publicly available. We stress that we
did not have “insider access” to any of the system’s compo-
nents, and we did not have access to any vendor design or
communication specifications.

The AccuBasic language is thought to be relatively
benign, given that it is “sandboxed” by the firmware and
has only read-only access to the sensitive memory arcas of
the AV-OS system. Previous works [1, 2] touched briefly
on the role of this language in developing attack vectors
against the AV-OS and did not utilize its full potential (from
the attacker’s viewpoint). The results presented in another
report [14] (that was based on insider access of the actual
source of the Accubasic interpreter), hinted to some po-
tential issues with the language, although no concrete mal-
ware was presented.

Here, we demonstrate that by implanting “AccuBasic
Malware” code into a terminal we can (i) strengthen the
previous attacks of [1, 2] by making them wnderectable 10
pre-election audils, thus substantially increasing the seri-
ousness of the threat by such attacks, and (i) conditionally
bias the election results (o reach a desired outcome. These
results arc reported in Section 3.

Finally., we deal with random audits and how they can
be used to validate that a certain procedure carried out us-
ing specialized devices is not compromised. Audits are
based on executing the machine operation independently on
a small random sample of the device population: these re-
sults arc addressed in Section 4. We (inish the paper with a
review of the lessons learmed from our investigation.

EN \‘\\al Wiaire = mai 1TCIC U S L’..;;;A <

Aculloce
prob lems

SQCQF‘\’JQI(
ro £raud #
e rOr

Software

Hardware

N R Ao AV-0S .
Ballots Firmware

Election
Results

AV-0S |
Firmware

""""" » Data Flow

> Write Cperation

[: Trusted

Figure 2. Architecture of the AV-OS voting ter-
minal. Note that “GEMS” is the initialization
system.

a device, it would then be possible to determine if the out-
put is correct given the input, and also to determine if the
discrepancies are statistically significant for the given ap-
plication. We note that if it is not possible to store the input
stream directly the voting terminal may assist an operator to
produce a snapshot of an input; this is what happens for ex-
ample in “voter verifiable paper audit trail” (VVPAT) voting
terminals that first print a little paper receipt of the voter’s
choices, then require the validation of the voter and finally
store the receipt lor future auditing purposes.

3. Case Study: Optical Scan Electronic Voting

In this section we turn our attention to Optical Scan (OS)
electronic voting, an architecture for electronic voting de-
vices that fits into the model of special purpose trusted com-
puting devices of Figure | and we discuss the security vul-
nerabilities of the Diebold Accu-Vote OS optical scan vot-
ing terminal (AV-OS), specifically, those related to the soft-
ware components. First, Section 3.1 describes the AV-OS
machine in relation to the special purpose trusted comput-
ing architecture. Section 3.2 then presents attacks against
each software component based on previous work and our
own findings. Methods of delivering these attacks are illus-
trated in Section 3.3. Section 3.4 discusses some lessons to
be learned fromn these attacks.

3.1. The Av-08 Optical Scan Voting Terminal

The AV-OS election system consists of (wo components:
the AccuVote Optical Scan voting terminal (the AV-OS ter-
minal) and the ballot design and central tabulation system
(GEMS, for Global Llection Management System). These
components have the following characteristics:

o The GEMS software 1s installed on a conventional PC

that is equipped with a serial port and includes a ballot
design system and a tabulation system.

e The specifications of an election are downloaded onto
1 40-pin 128KB Epson memory card present in the AV-
OS. This specification includes the layour of the bub-
ble sheet and candidate names.

e The AV-OS system used in this study contained the
firmware version 1.96.6 (in the form of an EPROM
chip). It 1s equipped with an optical scanner, a paper-
tape dot-matrix printer, a LCD display, a serial com-
munication port, and telephone jacks leading to a built-
in modem. It runs on a V25 CPU (an 8088 compatible
processor). For election deployment the system is se-
cured within a ballot box so that no sensitive controls
or connectors are exposed to the voter.

o In addition to the firmware, the AV-OS is given a byte-
code which provides functions used for reporting elec-
tion results by printing to the audit tape.

The AV-OS terminal fits into the special purpose trusted
computing device model we presented. Figure 2 shows
the architecture of the AV-OS (cf. the general framework
as shown in Figure 1). The firnware can be considered
trusted since an attack against it would require replacing the
memory chip storing the firmware. This, of course, does
not imply any guarantecs regarding the correctness of the
firmware, but only that an attacker other than an insider is
unlikely to be able to tamper with it.

During an election the input stream consists of bubble
sheets in which voters have marked their votes. For our
purposes, these are assumed to be valid from the design and
printing process, and authenticated by the poll workers that
distribute the ballot sheets during an election. The machine
also has two buttons, YES and NO, which are hidden during
an election and are used by poll workers during initializa-
tion and when printing the final report or audit logs.

Before an election and prior to delivering the system at
a poll site, state officials load two pieces of data using the
GEMS software: the ballot layout and the bytecode. To-
gether with the counters, these are the three software com-
ponents of the system. The ballot layout indicates how bub-
ble sheet locations correspond to the counters located on the
memory card. The bylecode consists of functions used, for
example, to print the zero total report prior to an election
and to print the election totals after an election. The initial
state of the counters is zero.

3.2, Attack Vectors

In this section we present “attack vectors™ against the
AV-0O8 that tamper with the software componcents. We first

“ut\i

. k l

Yack
H

review existing attacks that were demonstrated against the
AV-OS terminal and then we proceed to our new results.

Previous Attack Vectors: Initial State and Ballot
Layout

3.2.1

In [1], Hursti demonstrates an attack in which counters are

given values k£ and —k mod 65536. After the election, &

votes will thus be transfered from one candidate to the other,

and the total votes reported will remain unchanged. Specit-
ically, an attacker must gain access to the memory card and
use a card reader/writer to alter the state, after the machine
has already been initialized (note that zeroing the counters
is part of the mitialization process). The reporting function-
ality is also altered in [1] to make sure that the counters
are reported as zero whereas they are not. We expand on
this direction substantially on our own demonstrated attack
vectors. A downside of this attack (and upside from the
system’s viewpoint) 18 that the counters can be zerced at the
poll site by running a “mock auditing election” (of course it
is up to the state officials to incorporate such procedure into
the poll preparation proccdure).

In the AV-OS terminal, the ballot layout given from the
GEMS initialization system is not digitally signed and no
attempt was made to authenticate the source of the layout
(beyond using a proprietary integrity checking protocol that
was non-cryptographic). In |2}, an attack was demonstrated
in which the ballot data is downloaded and modified, and a

T Computer masquerades as a GEMS server in order to load
this altered layout. The result is an attack in which a candi-
date’s votes may be nullified by moving their bubble sheet
location to an area with no bubbles, or swapped with an-
other candidate’s by swapping their bubble locations.

3.2.2 Our Results: AccuBasic MalWare for Conceal-
ing Tampering and Results Manipulation

The AV-OS bases its reporting functionality on the firmware
and the AccuBasic bytecode that contains the format-
ing desired for the election (cf. Figure 2). AccuBasic
1s a proprietary language that was developed by Diebold.
The AccuBasic bylecode programs are compiled [rom
AccuBRasic code using a compiler that is part of the
GEMS initialization system. The bytecode itself is an
ASCII file and can be edited with ordinary text editors. An
AccuBasic compiler is publicly available from [20]; we
took advantage of the compiler for reverse engincering the
bylecode as AccuBasic is not a publicly specified lan-
guage. For readability, we will use the AccuBasic syntax
to tllustrate the functionality of the bytecode. AccuRasic

is a procedural language and should be understandable lor
readers Lamiliar with typical procedural programming lan-
SUARCS.

ELECY10H AES
Ak epokok R0k

WESTPORT
MUONICIPRL ELECT In‘\!
DATE: 11-38/85
POLL CTRY 1089
PRECIRCT
VERSIGH: 13 COPYT B
LOLUNT: 1 SIZE: 123

oce —UDTE RELEASE! L, 95. A

"R.L{u_ MR
s COUMTER CHELA:

rms 1

PDECIHFT CHECK:
COUNTER CRECK:

leE: 11:53:728

1827 /66 |

P TY

s FRECINCT: 1w
1

ok SRR kR kol vk ~ SE

BALLOTS CAST i

11

ok i AR a7 e 6 i

BORRD OF FINANCE i e

RACE # 3B | RAe 7 30

BLONKS 22 I BLANKS 72

R.3RVIN 8 I'R,GAVIN 2]

THOMAS € 5l THOMRS T e |

RALPH 9 RIALPH 2

CHRRLES 3 CHARLES g

STEVEM L 1 STEVEM L 1

KEUIN A 1< KEUIN A 2

4 WRITE-1HS @ # WRITE-IMS
FofRp R

Figure 3. Election results reported by the same
AV-OS terminal before (left) and after (right) the
time 12:00 clection time specified in the bytecode.
The time-bomb was activated and the counters were
unswapped to reveal the tampering.

Like the ballot layout, the bytecode is not cryptographi-
cally authenticated. In [1], special bytecode was used where
counters were reported to be zero when in fact they were

not, i.e., an attacker could force the machine to print only 0
in the “Zero Tofal Report,” meant to 1nsure that the couniers

are indeed 0. This could be used to hide an improper initial

state as in the case of |1].

During our own experimentation we found that the byte-{ T, e

code language offers a wealth of functions that can be po- 4
tentially exploited by an attacker, In particular, we will ¢
demonstrate a “time bomb” attack in which the bytecode
checks the date and lime in order o decide whether the

election has begun. An altack utihzing such code can re-
tain proper behavior in pre-election testing, in which the

machine is verified by comparison with hand counted bal-

lots, while behaving improperly during the actual election.
We report on these findings below.

QO IY\L

HCLCK

Concealing Tampered Initial States. The advantage of Ve tes

modifving the counters (¢.g., by tampering with the layout p
or altering the initial state} is that the reported resnlts will be
compromised whether they are reported via the audil tape or

clectronically through the GEMS sottware. This means that of

the recording of the votes is permanently altered, at least,
with respect to the counter arca in the memory card. An

ﬂ:mc\mm@//

™

’ Q“’QCH o

-vades

AV-O8 terminal compromised with an attack such as those
described in {1 or [2] records the actual results improperly.
Still. the umproper recording that s performed can be de-
tected by pre-election testing and thus this may allow the
poll-workers to isolate a tampered terminal. SGll, as we
will demnonstrate, it is possible to make a terminal behave
properly during pre-clection tests.

In this section we demonstrate how a properly modi-

ficd bytecode can lest for the date and time and alter the

reporied resulis to conceal the tampered initial state priof

to the actual clection. This “double deceit” of a compro-

mised machine — behaving improperly in the real election

but properly when tested — can be achieved as follows: the
report functionality of the tenninal is altered so that it cor-
rects misaligned counters or non-zero initialized counters
in the event that the ballot count is too low {which would

correspond to the case when the poll officials test a small

batch of hand-counted voles) or when the date and time is

prior to the real election time. In the case of a candidate
swapping attack, the votes can be “un-swapped,” and in the

case of modified initial counters, the pre-loaded values can
be subtracted to obtain the true value.

In other words, in standard computer security terminol-
ogy. the attacker can plant a “time-bomb” in the terminal.
Before the efection, the program in the terminal’s card in-
verts the swapped counters to conceal the malicious behav-
ior (the swapping of votes). When the time of the election
comes, the illicit behavior is triggered automatically. This
sensitivity to time will prevent poll-workers that perform
the standard test procedures from revealing that a machine

Y24 (oo S TOmpromised priof 1o the election,

The rest of this section will briefly describe the bytecode
alteration, illustrating the damage that can be done with this
secmingly benign language used for reporting. When the
AV-O8 terminal is asked to print the election resuts, it ex-
ecutes a routine z in the bytecode located on the memory
card. In its untampered state, the reporting routine loops
over all the candidates and prints out the vote count for that
candidate. This can be written, following AccuBasic syn-
tax, roughly as follows:

PROC 2
%c = 0
FOREACH candidate
%c = candidate . ctr {0]
{PRINT VOTE COUNT AS %}
ENDFOREACH
ENDPROC

e WD e

-3 N

The variable ¢ holds the vote count to be used in the code
that performs the layout and printing on fine 5. This vole
count is initialized (o zero on line 2 and takes the correct
count inside the loop on line 4. The “time-bomb™ attack
adds a loop ar the beginning of this routine to lookup the
vote counts recorded for the two candidates that have been

swapped. It then checks the date and time and. if the elec-
tion has not yet begun, it scts the variable ¢ in order (o swap
the candidate votes. undoing the swap that was donc by
changing the ballot layout. The actual AccuBasic code
then becomes:

I PROC 2

2 % = 0

3 % = 0

4 %) = 0

b FORFACH candidate

6 IF STRCMP(candidate .name, "A") = 0
7 %i = candidate. ctr[0]

8 ELIF STRCMP(candidate .name, "B”) = 0
9 %j = candidate.ctr {0}

10 ENDIF

1t ENDFORFACH

12 FORFACH candidate

13 %ec = candidate . ctr [0]

14 IF STRCMP(DATE, "11/07/06")!=0

15 OR STRCMP(TIME. "07:00:007) <= 0
16 ¥

17 STRCMP(candidate .name, "A”) = 0
18 G = %j

19 ELIF

20 STRCMP(candidate .pame, "B") = 0
21 Soc = Y%i

22 ENDIF

23 ENDIF

24 {PRINT VOTE COUNT AS %}

25 ENDFOREACH

26 ENDPROC

Lines 3—4 declare the varables 1 and j which will hold
the vote counts for the swapped candidates. Lines 5-11
ook up the votes for the candidates with names “A” and
“B” and store the counts in variables [and j. Lines 12-23
are the loop from the original code, but now it swaps the
votes for the target candidates on lines 16-20 when cither
of the conditions on lines 1415 are met. The first condition
tests whether it is the clection day while the second condi-
tion tests whether it is late enough in the day (i.e.. polls arc
open and any tests must be complete). Additional condi-
tions, such as the total number of ballots received, are also
possible. Notice that resetting the counters and going back
into pre-clection testing mode will not help poll-workers to
reveal the attack and will not invalidate the vote swapping
attack.

A key insight from this attack is that the limitations im-

. Is'
posed by AccuBasic, nanely the read-only access to the 8 &&a ckE
N ;o Ay afttacrlre crieh ae g ae | |
memory card, do not prevent attacks such as these. In pac deecn +

ticular, local variables and arithmetic expressions can be

- e = - - O UL
used to perform this “ttime-bomb™ atfack without using any Quine

wrile-access to the memory card.

Rlcess by
Ma ch nes

4. Audits

In this section we discuss how audits can be used to test
the integrity of a procedure that is carried out by a spe-
cial purpose trusted computing device. The fundamental
assumption hece is that the real input stream is stored and
is available for auditing purposes. The principal issue we
resolve in this section is the following: suppose that a pro-
cedure was carried out by a nuimber of devices that could
have been tampered with individually. Given that the input
strearn is stored for each one. for how many devices the cal-
culation should be independently repeated and compared to
the “‘machine counts” to have a reasonable confidence that
no machine tampering occurred?

It should be stressed that a random sampling plays a
crucial role for an unbiased audit report. In [19] a simple
method for sampling precincts in an observable way is pre-
sented. Here we give some tradeotf between the nuimber of
machines to be audited and a level of confidence to find at
least one compromised machine.

First consider the case in which compromised machines
are saimpled with replacement. In this case, we can compute
the number of machines that must be audited for a given
level of confidence that at least one compromised machine
is found. Table I shows the level number of machines that
should be audited for a probability that at least one such ma-
chine was found and a given fraction of machines that are
compromised. For example, if 95% confidence is desired
and 10% of the machines are compromised, then 28 ma-
chines should be audited in order to be 95% sure that one
such machine was found. This is computed as

_og{l—¢)

log(l—f)

where s is the required sample size, ¢ is the level of con-
fidence and f is the fraction of machines that are compro-
mised. This table is valid for any number of total machines
and represents a “safe” bound on the sample size.

Next, consider the case in which the number of machines
is known and we wish to compute the probability that we
have found at least one compromised machine. Table 2
shows, for the case of 800 machines, the probability that at
least one compromised machine 1s found for a given sam-
ple size and compromised ratio. For example. if 107 of the
machines (80 in this case) are compromised. and a sample
size of 20 is used, then we can be 88% sure that our sample
will include a compromised machine. This is computed as

where ¢ is the confidence that a compromised machine will
be found. N is the total number of voting machines, [is

Table 1. Number of machines that need to be audited
to achieve desired level of confidence that at least one
compromised machine was found.

Confidence

Machines G0.0% YSO% YLD Yol 9.5
compromised

TS) ’ 9T 0

- 5y 68

™ T

T kE) 40

w33

24 2K

0% | 10 13716 T 24

Table 2. Probability of finding at least one compro-
mised machine given a known number of machines
(800 in this case).

Fraction of machines compromised

Sample 1

iz 5.0% 71.5% 10.0% 15.0% 17.5% 200%
10 040 034 0.65 0.1 0.56 0.89
13 034 0.69 0.80 0.92 095 0.57
200 067 079 0.8% 0.96 0.98 0.9y
25 073 0.86 0.93 0.98 099 099
T30 07y 0wl 0.96 D99 0.99 1.00
i3 [084 094 0.98 0.9y L.ov 1.00
40 T 088 096 09y 099 1.00 1.00

the fraction of machines that are compromised, and s is the
sample size.

These tables show that auditing is feasible, even for a
high level of confidence.

5. Conclusion

In this paper we presented an architectural model for
special purpose trusted devices that models well electronic
voting systems. We then presented a case study of the AV-
08 system including an analysis of recent findings from the
literature and our own experimentation. We analyzed the
proprictary AccuBasic language that is used by the AV-
08 and we presented malware written in this language that
can be used to either strengthen previously known attacks
or make them undetectable by pre-clection tests. We also
presented AccuBasic malware that biases the reporting
functionality and misrepresents the counts. Next, we dis-
cussed how to perform audits based on random sampling
in large scale deployiments of trusted devices (o ensure that
no devices have been tampered. Finally, we discussed the
lessons to be learned from these Dvestigations.

It is clear from this work that security issues exist in the

AV-0OS system, and any system with a similar architecture
will posses similar flaws unless proper security procedures
are put in place. Of particular interest is the flexibility of
attacks through the bytecode. despite having no ability to
write (o the intemal storage. The ability to modify the lay-
out and reporting functionalities is essential (o make such
a system flexible enough (o be practical. However, in_ad-
dition to authentication mechanisms, verification that these
components are behaving properly should be a mandatory
requireiment,

Acknowled‘gement. The authors thank Michael Konnan
and David Walluck for contributing in the AV-OS analysis
at an earlier stage of the present research effort.

References

{1} Hami Hursti. Critical Security Issues with Diebold
Optical Scan Design, Black Box Voting Project, July
4, 2005
htto://www.blackboxvoting.org/
BBVreport .pdf

(21 Aggelos Kiayias, Laurent Michel, Alexander Russell,
Narasimha Shashidhar, Andrew See, and Alexander
A. Shvartsman An Authentication and Ballot Layout
Attack against an Optical Scan Voting Terminal 2007
USENIX/ACCURATE Electronic Voting Technology
Workshop (EVT "07)August §, 2007, Boston, MA

[3] Brennen Center Task Force on Voting Systemn Secu-
rity. The machinery of democracy: Prolecting elec-
Hions in an electronic world, 2005. Lawrence Norden,
Chair. Brennen Center for Justice, NYU School of
Law http://www.brennancenter.org

(4] Dimitris Gritzalis, editor. Secure Electronic Voting.
Springer-Verlag, Berlin, Genmany. Jan 1, 2003.

[5] Help America Vole Act (HAVA), http://www.
fec.gov/hava/law.ext.txt

[6] National Association of Secretarics of the State,
NASS Survey summary and highlights, How States
Are Spending Federal Election Reform Dollars,
November 24, 2004,

[71 Election Data Services Inc. 2006 Voting Equipment
Study. February 6. 2006.
Litp://waw.electicndataservices.
com/BEDBSIine VESTuAdv2004 . pdf

[8] Caltech Press Release. Caltech-MIT Team Finds
35% Improvement in Florida’s Voling Technology.
September 19, 2002,
http://nr.caltech.edu/media/

Pregs: s/PR122E84 .html

[9] Jonathan Bannet, David W. Price, Algis Rudys. Justin
Singer, Dan S. Wallach: Hack-a-Vote: Sccurity Issues
with Electronic Voting Systems. IEEE Security & Pri-
vacy 2(1): 32-37 (2004)

[10] Tadayoshi Kohno, Adain Stubblefield, Aviel D. Rubin
and Dan S, Wallach, Analysis of an Electronic Vot-
ing System. 1IEEE Symposium on Security and Privacy
2004, IEEE Computer Society Press, 2004.

[11] Poorvi L. Vora, Ben Adida, Ren Bucholz, David
Chaum, David L. Dill. David Jefferson, Douglas W.
Jones, Williamm Lattin, Aviel D. Rubin, Michael L
Shammos, Moti Yung: Evaluation of voting systems.
Commun. ACM 47(11): 144 (2004)

[12] RABA Innovative Solution Cell. Trusted agent report
Diebold AccuVote-TS voting system, January 2004.

[13] Harri Hursti, Diebold TSx Evaluation, Black Box
Voting Projcct, May L1, 2006
http://www.blackboxvoting.crg/
BBVtsxstudy.pdf

[14] David Wagner, David Jetferson and Matt Bishop. Se-
curity Analysis of the Diebold AccuBasic Inter-
preter, Voting Systems Technology Assessment Advi-
sory Board, University of California, Berkeley, Febru-
ary 14, 2006.

[15] Ariel J. Feldman, I. Alex Haldennan, and Edward W.
Felten, Security Analysis of the Diebold AccuVole-TS
Voting Machine, September 13, 2006
http://itpolicv.princeton.edu/
voting

(18] David Chaum, Peter Y. A. Ryan, Steve A. Schnei-
der, A Practical Voter-Verifiable Election Scheme. ES-
ORICS 2005, pp. 118-139.

[17] Rebecca Mercuri, A Better Ballol Box?, IEEE Spec-
trum, Volume 39, Number 10, October 2002.

[18] D. Molnar, T. Kohno, N. Sastry, and D. Wagner.
Tamper-Evident, History-Independent, Subliminal-
Free Data Structures on PROM Storage -or- How Lo
Store Ballots ort a Voting Machine. Extended abstract.
in IEEE Sccurily and Privacy. 2006.

[19] Arel Cordero, David Wagner, and David Dill. The
Role of Dice in Efection Audits — Extended Abstract.
IAVaSS Workshop On Trustworthy Elections (WOTE
2006). June 29. 2006

{20} Black Box Voling. Ltto:/waw,

nlackpoxvoting. org.

